Automatic assessment of OCR quality in historical documents

A. Gupta1, R. Gutierrez-Osuna1, M. Christy2, B. Capitanu3
L. Auvil3, L. Grumbach2, R. Furuta1, and L. Mandell2

1Computer Science and Engineering, Texas A&M University
2Initiative for Digital Humanities, Texas A&M University
3Illinois Informatics Institute, University of Illinois at Urbana-Champaign
What are historical documents?

- Correspondence
- Diaries
- Newspapers
- Government Documents
- Books
Digitizing historical documents

Why?
- Historical records are in analog form
- Due to their fragility, most of them are not accessible

How to make them accessible?
- Digital text transcription

Ways of digitization
- Hand transcribe each book
 - Resource intensive
- OCR: optical character recognition
 - high-error in text transcription

Mass digitization projects
Early modern OCR project (eMOP)

Goal
- Improve OCR accuracy for early modern texts
 - 300k documents, 45M pages
- Open source OCR tools

Challenges
- Early modern printing
- Document image problems
Why measure OCR quality?

Post-processing triage

*OCR Output

OCR Quality assessment

Quality Score > 0.8?

Yes → Good Documents → Linguistic Analysis

No → Bad Documents → Diagnostic Pipeline

Black, font skew, Warp, Bleed through

*hOCR output from Tesseract OCR.
Our approach

Post-process OCR output
- Page segmentation result such as bounding box (BB) coordinates
- OCR word confidence

Build ML models to remove noise
- Binary classification: classify each BB either as text or noise

Quality \downarrow \text{OCR} \propto \frac{1}{\% \text{ noise BBs}}
Language-agnostic approach
Quality assessment algorithm

OCR Output

Pre-filtering

Column segmentation

Local iterative relabeling

BB labels

Step 1

Step 2
Prefiltering

- Provides initial labels to be refined in later stages
- Rule based classifier
 - BB properties and OCR word confidence.
 - Conjunction of rules
- Problems
 - Many text BBs classified as noise
 - Need a way to recover lost text BBs
Column extraction

– Extract individual column and then process each column
Local iterative relabeling

- Refines initial labels
- Based on BB properties and its neighborhood
- Applies an MLP classifier iteratively to refine BB labels (text/noise)

Features used during local iterative relabeling

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Score from nearest neighbors; see eq. (1)</td>
</tr>
<tr>
<td>$C\downarrow OCT$</td>
<td>OCR word confidence*</td>
</tr>
<tr>
<td>R</td>
<td>Height-to-width ratio of BB*</td>
</tr>
<tr>
<td>A</td>
<td>Area of BB*</td>
</tr>
<tr>
<td>$H\downarrow no \ _{rm}$</td>
<td>Normalized height: $H\downarrow no \ {rm} = \frac{H - H{med}}{H_{IQR}}$</td>
</tr>
</tbody>
</table>

Initial labels from pre-filter stage

BBs for a column ➔ Geometric Features ➔ Multi-layer perceptron model ➔ New labels

Labels: Text or Noise

Yes ➔ No old labels = new labels?
Final output
Results

Data refinement: local iterative relabeling.

- Binarized page images
- Image
 - Multi-page; single column; ink bleed-through; multiple skew; warping; printed margins

Label creation

- Each BB returned by OCR is manually labelled as 0: noise and 1: text
- 72,366 BBs are labelled

Graph:

- X-axis: Number of iterations
- Y-axis: Proportion
- Data points:
 - 0% at iteration 1
 - 20% at iteration 2
 - 40% at iteration 3
 - 60% at iteration 4
 - 80% at iteration 5
 - 100% at iteration 5

Graph legend:

- Pre-filtering
- After iterative relabeling

EMOP corpora.
Filtering quality

- 6,775 test documents with ground truth text
- $S_{\downarrow JW}$ similarity b/w OCR output and ground truth
- eMOP uses juxta-cl* to generate $S_{\downarrow JW}$

![Graph showing change in similarity and filtering quality](https://example.com/graph.png)

*Implementations from juxtacommons.org
Discussion

Summary

- Non-text OCR outputs suffice to
 - Identify text and noise in a document image
 - Estimate the document’s overall quality
 - Improve OCR transcription performance when image processing based preprocessing is prohibitive

Future work

- Diagnostic pipeline based on active learning
- Linguistic features can be explored
Questions